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Foreward

This report describes the work done during most of 1989 under

research Grant, Number NAG-I-685, entitled "Use of Energy

Accountancy and Power Flow Techniques for Aircraft Noise

Transmission". The main emphasis of this report is on the use of

the mobility power flow approach to deal with the fluid structure

interaction problem. In conformity with previous reports, a case

study of an L-shaped plate will be considered to demonstrate the

approach. This report is for the period between June 1989 to

December 1989. During this period one Master's thesis has been

finished and will be defended the first week of January 1990.

The topic of this finished thesis is the derivation of the

mobility power flow approach for the case of acoustic excitation

including scatter. A second Master's thesis which addresses the

experimental side of the acoustic excitation problem is in the

final stages and will be finished the first quarter of 1990.

This is the seventh in this series of progress reports under this

research grant.

The author would like to acknowledge the graduate students

who participated in this research work, the Department of Ocean

Engineering and most important the financial support from the

Structural Acoustics Division of the NASA Langley Research

Center.

Submitted by

J.M. Cuschieri

Principal Investigator
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ABSTRACT

An analytical investigation based on the Mobility Power Flow

method is presented for the determination of the vibrational

response and power flow for two coupled flat plate structures in

an L-shaped configuration, subjected to acoustical excitation.

The principle of the mobility power flow method consists of

dividing the global structure into a series of subsystems coupled

together using mobility functions. Each separate subsystem is

analyzed independently to determine the structural mobility

functions for the junction and excitation locations. The

mobility functions, together with the characteristics of the

junction between the subsystems, are then used to determine the

response of the global structure and the power flow. In the

coupled plate structure considered here, mobility power flow

expressions are derived for excitation by an incident acoustic

plane wave. In this case the forces (acoustic pressures) acting

on the structure are dependent on the response of the structure

because of the scattered pressure component. The interaction

between the structure and the fluid leads to the derivation of a

corrected mode shape for the plates' normal surface velocity and

also for the structure mobility functions. The determination of

the scattered pressure components in the expressions for the

power flow represents an additional component in the power flow

balance for the source plate and the receiver plate. This

component represents the radiated acoustical power from the plate

structure.



INTRODUCTION

Mobility Power Flow (MPF) methods [1-4] have been shown

previously to provide an effective structure analysis tool to

deal with the response of one and two dimensional structures with

direct mechanical excitation. Comparison of the MPF results with

experimental results on a one dimensional structure [4], and with

numerical (Finite Element Analysis (FEA)) [3] and statistical

(Statistical Energy Analysis (SEA)) [4] results showed good

agreement. Using the MPF method, the exchange of vibrational

power between the substructures can be obtained for different

structural wave components [5].

One limitation of past work [1-5] is that only excitation by

direct point or distributed forces has been considered and that

interaction with the surrounding medium has been neglected. In

practical situations, distributed loads from acoustic excitation

often apply on structures, where the influence of the surrounding

medium may not be negligible. Therefore, the main objective of

this study is to extend the MPF method to distributed excitation

when the excitation is influenced by the structural response

(acoustic excitation). To be consistent with previous work the

structure that will be considered in the analysis is an L-shaped

plate, with an acoustic wave incident on one side of one of the

flat plate substructures.

In using the MPF, the structure is modeled by a series of

coupled substructures with each substructure analyzed

independently. The coupling between the substructures is

defined through the boundary conditions at the junctions, taking

into account the forces and moments that the substructures exert

on each other. Expressions for the input power to a substructure

and for the transferred power between the substructures, are

obtained in terms of the input and junction velocity

contributions and the forces and moments that are applied on the

substructures.

With direct force excitation of the structure, the input and

transferred power can be written in terms of the input and

transfer structural mobility functions of the substructures

[2]. These only depend on the geometry of the specific

substructure and on the frequency of excitation. The solution

for the response of the global structure can be presented in a

matrix form, which allows the method to deal with a large number

of connected substructures. One advantage of dividing the global

structure into subsystems is that, if the dependence of the

response of the global structure on one of the subsystems is

required, it is not necessary to repeat the whole of the analysis

for the global structure, but only for that part that deals with

the modified subsystem. Furthermore, the analysis is efficient

to implement if the subsystem elements are identical, in which



case the independent response of only a typical subsystem is
required.

Having defined the approach for a distributed mechanical

excitation _n a past report [6], the analysis is extended here to

deal with the acoustic excitation of the structure. A harmonic

plane acoustic wave is assumed to be incident on one side of one

of the flat plate substructures• With acoustic excitation, the

effects of fluid l_ading may not be negligible. The scattered

pressure will interfere with the incident pressure field and the

mode shape of the structure will be influenced by the presence of

the fluid. The fluid that will be considered here is air and

therefore approximations applicable for light fluid loading can
be applied.

ACOUSTIC EXCITATION

Consider a structure in the plane (x,y,0), with an acoustic

fluid occupying the half-space z > 0. A plane wave incident on

the surface of this structure can be described by:

Pi(x,Y, z) = Po e(-jkxc°s0sin4) e(-jkysinesin4) e(kzcos4)
i •

The direction of the plane wave incident on the surface of

the structure subtends an angle 4 to the normal of the plate and

an angle e to the x-axis direction in the plane of the structure

(figure i). This acoustic wave, incident on the surface of the

structure represents the excitation and the structure is set in

motion. The motion of the structure creates an acoustic field

which interact with the incident field. Thus, the total

pressure acting on the structure surface is modified due to the

presence of the scattered acoustic pressure component. The total

pressure acting on the surface of the structure can be

represented by [7]:

p(x,y,z=0) = 2Pi(x,y,z=0) + Ps(X,y,z=0) B

where Pi(x,y,z=0) represents the incident pressure component and

Ps(X,Y,Z=0) represents the scattered pressure component. The

factor of 2 in front of the incident pressure component is

introduced to take into account the reflected pressure component

which is equal and opposite in the z direction to the incident

pressure component (twice Pi(x,y,z=0) represents the blocked

pressure component).

From equation (2) it can be observed that the scattered

pressure component can be dealt with separate from the incident
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pressure. If the structure has responses which are associated

with different forces and moments acting on the structure, each

of these responses creates a scattered pressure component. The
total scattered pressure, thus has contributions from these

different components and these can be dealt with separately.

In the case of the L-shaped plate, the scattered pressure

from the source plate, the plate receiving the acoustic wave, has

two components, one which can be associated with the acoustic
excitation and another component which can be associated with the

edge moment representing the influence of the attached receiver

plate. Each of these components can be dealt with separately,

provided the changes in the response of the structure due to the

fluid loading are taken into account.

If the structure response mode shape is apriori known, the

influence of the fluid loading on the structure can be directly

determined from a solution of the coupled equations of motion

[7]. However, this approach is not applicable when the mode

function is not known. An alternative approach has been

suggested by Leppington [8], where a solution for the response

and scattered pressure are obtained based on an approximate
solution for the case where the scattered pressure is not taken

into account. The complete solution is given in terms of a

correction factor, which is introduced to take into account the

scattered pressure component and still satisfy the boundary
conditions for the structure and the acoustic medium.

With the Leppington [8] approach, the solutions for the

structure response and scattered pressure are obtained by first

determining the influence of the fluid loading on the response of

the structure. This influence is described by a correction

factor applied to the response of the structure obtained when the
fluid loading is neglected. This correcting factor is

independent of the magnitude of the applied loading and is mainly

controlled by the boundary conditions for the structure and the

type of loading. From knowledge of the response, a scattered

pressure is computed. This scattered pressure is used to

determine the pressure loading on the surface of the structure

and also the vibrational power input to the structure.

The above approach would directly fit into the MPF method,

since with the MPF the global structure response is analyzed in

terms of the separate responses of the subsystems representing

the global structure. The scattered pressure components of each

subsystem is thus separately determined and then summed to
compute the power input to the global structure. That is, in

this case of acoustic excitation of the L-shaped plate, the

approach that will be followed would be to separately determine

the response, including the correction factor, for each of the

two plate subsystems, one representing a simply supported plate
with an incident acoustic wave and the second representing a
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simply supported plate with an edge moment. Then after having

determined these corrected mobility functions, the total response

of the structure and the scattered pressure components are

computed. The power flow components are then determined from

these resul_s. The solutions for the two subsystems of the L-

shaped plate follow in the next sections.

SIMPLY SUPPORTED FLATE SUBJECTED TO AN INCIDENT SOUND FIELD

The equation of motion for the transverse displacement of a

plate is given by:

DpVW(x,y) - p_W(x,y) = p(x,y,z=0) ,

where p(x,y,z=0) represents the pressure loading the plate. This

term consists of the incident pressure component plus the

scattered pressure component (equation 2).

Assuming a sinusoidal mode shape in the x direction [2], the

direction parallel to the junction,, the displacement W(x,y) can

be written in the form,

m_l

Substituting this equation into equation (3),

°

[ 12a2y>ay>W(y) - 2 + W(y)

Oy 2 Oy 4 P

P(Y)

D
P

°

where the subscript m is dropped for simplicity, kp is the plate
wavenumber and p(y) is defined by

p(y) - -- dx
a

a
O

°



Applying equation (6) to the incident pressure, given by equation

(i),

PP

pi(y ) o II e ('jkysinOsin4) 7.

where

m (-jkacosSsin4)
m_ (-I) e

II 8.

a (kcosOsin_ (m_/a_

The scattered pressure component for mode m is a function of

the normal surface velocity and is therefore dependent on the

solution for the response of the plate. That is, a coupled

solution for the plate and the scattered pressure is required. If

the scattered pressure component is neglected, the right hand-

side of equation (5) has only one component, given by equation

(7) multiplied by a factor of 2. In this case the solution for

the displacement of the plate can be written in the form:

W(y) -- Wg(y) + Wh(Y ) ,

where Wg(y) is the particular solution of equation (5),

e (-jkysinOsin4)
4Po Ii

Wg(y) i0.

Dp [(m_/a)2 + (ksinOsin4)2] 2 - k4p

and Wh(Y ) is the solution of the homogeneous equation of motion,

Wh(Y ) = Acosh(klY ) + Bsinh(klY ) +Ccos(k2Y ) + Dsin(k2Y ) ii.

where kland k 2 are defined by
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k12_ 2k_ + k2y

k2 - kY

k - m_/a
X

•

k 2 P k 2
(4) --

Y D x
. p 12.

The coefficients A,B,C and D in equation (ii) are selected to

satisfy the boundary conditions in the y direction. In the case

of the simply supported plate these boundary conditions are:

W(y-O) - 0 ; a2W(y=O) - 0

2
_y

W(y=b) - 0 ; a2W(y=b) - 0

Solving for A,B,C

yield

2
ay

13.

and D using these boundary conditions will

9
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A i .

B I

C I

n i

W"(O)
g

2

+ Wg(0)k 2

2k 2
P

-k_Wg(b)

F
W''(b) + IW''(O) -
g Lg

2k 2 sinh(klb )
P

2]

Wg(O)k2J cosh(klb)

W"(O)
g

2k 2
P

Wg(0)k21

9

-kTW(b)_ + W''g(b)

2k 2 sin(k2b )
P

Wg(O)k21] cos (k2 b )

14.

where the double prime indicates a second derivative with respect

to y.

To compensate for neglecting the scattered pressure

component, a corrective complex coefficient K I is introduced [8]

Wl(Y ) = Wg(y) + KiWh(Y) 15.

The main influence of the scattered pressure component will be on

the contribution from the solution to the homogenous equation of

motion [8]. This is the reason why the correction factor K is

only applied to the term W h(y) . This complex correction

coefficient K will be close to unity away from the resonant

frequencies and will deviate from unity at the resonant

frequencies where the influence of the fluid on the velocity mode

shape is most significant [8]. If Wl(Y ) represents the exact

solution for the response of the simply supported plate to the

acoustic excitation, then the approximate result obtained when

neglecting the scattered pressure component introduces an error

W e(y) given by

We(Y ) = W(y) - Wl(Y ) 16.
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By substituting the above equation into the equation of
motion (equation 5), the error term We(Y) must satisfy the
differential equation,

ye4e "YW e(y) - 2 k4 (y)

8Y 2 aY4 p e Dp

17.

7

In solving equation (17), a set of boundary conditions that

apply to We(Y ) can be derived from the boundary conditions for

W(y).

We (y=0 or b) - -Wl(Y=0 or b) - -(Wg(0 or b) + KIWh(0 or b)) - 0

OW2(y=0 or b)
e aW21(Y=0 or b)

2 2
8y ay

8W_(y=0 or b)

+ K I

8y 2 ay 2

aW_(y-0 or b)
-0

18.

A solution for We(Y ) is derived in terms of the Green function

G(_,y) for the structure [8]

b
£

- -- | ' ' -)w"(0)W (y) I G(_,y)ps(_)d _ + G (b,y)W_ (b) - G'(O,y e
e JD

p o

+ G'''(b,y)Wi'(b) G'''(0,y)Wi'(0)

- 2(m_/a) [G'(b,y)We(b) G'(0,y)We(0) ]

19.

where the primes for the function G represent derivatives with

respect to _. The function G (f,y) is defined by:

ii



G(_,y)

20.

From the expression for We(Y), the coefficient K is selected

such that We(Y ) = 0 for all values of y. Substituting equation

(20) into equation (19), and equating We(Y ) to zero, an

expression is obtained that contains Ps(f), which is still an

unknown. However, Ps(f) can be expressed as a function of the

normal displacement of the plate, by using the momentum equation.

Introducing this substitution and after some manipulations which

are presented in the appendix, the following result is obtained

for Ps(_)

b

D 2_2a

p o "_ 21.

where _I is the fluid loading coefficient defined by:

_i = (_Po)/Dp , 22.

Po is the fluid density, and _ is the spatial Fourier transform

variable in the Y direction. I(_) and S(_) are defined in the

appendix. From equations (15), (18), (19) and (21) an expression

for the correcting coefficient K I is derived,

12



KI -

ii[ 1211
2_2a

"J [-_ ]2_i _ Wh(_)l(_)S(_)d_2_2a

+ RES

+ RES

23.

where

RES - k2cos(k2b)W_'(b)
k W'r(O)
2g

k21k2cos(k2b)Wg(b) + k21k2Wg(O)

24.

Having solved for the response of the simple supported plate

a modal mobility function can be defined by the ratio of the

modal velocity response to the input incident pressure. That is,

using the same notation as in previous reports, with the

subscript 1 indicating the input excitation location, the input

modal mobility for mode m is given by,

M I (Y) -
m

J_WI(Y)

P
o

j_41 1

aD
P

e ("jkay)

E

+ j_K I [ A'c°sh(klY) + B'sinh(klY) +

]C'cos(k2Y) + D'sin(k2Y)

25.

where
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k - ksin0sin4
a

26.

A F

Br

C I

Dr

2 k 2
211 [k2 a]

aD k 2
PP

211

aD k 2
PP

E

(k2a k22)e -jkab 2)cosh(klb)(k_ + k2

E sinh(klb )

-211

aD k 2
PP

2+k2
[.kl a]

E

211

aD k 2
P P

+ 2
-(k2a + k21)e-jkab (k2 + kl) cos(k2b)

-. sin(k2b )

27.

28,"

29.

30.

k212k4== + 31.
a p

Similarly, a modal transfer mobility function, defined by the

ratio of the edge rotational velocity per unit incident pressure,

can be derived from the above solution for the response. If the

subscript 2 represents the location of the junction, the modal

transfer mobility for mode m is given by,

14



M21
m

j_ 8WI (Y-b)

P ay
0

_4I 1 kae-jkab

aD -=
P

+ j_ K I [ A'klsinh(klb) +

BrklCOSh(klb) Ctk2sin(k2 b) + DWk2cos(k2b) ]

32.

One can observe that for these two mobility functions the

input mobility is a function of both the mode number and the

variable y while the transfer mobility is a function of only the

mode number. The reason for the y dependency for the input

mobility is because the excitation is distributed over the

surface of the plate structure and thus this input mobility

represents the response per unit incident pressure anywhere on

the surface of the plate structure.

SIMPLY SUPPORTED PLATE WITH AN EDGE MOMENT

An approach similar to the one used for the subsystem

discussed in the previous section will be used for this second

subsystem. In this case there is no incident acoustic waves,

that is Pi(x,y,z) = 0. The forces acting on this subsystem are

the edge moment and the scattered pressure. Therefore the same

equation of motion as equation (5) applies with the pressure term

on the right hand side only representing the scattered pressure.

Because of the presence of the edge moment, the boundary

conditions for the edge y=b of this plate subsystem are different

from those given in equation (13). The boundary conditions for

the edge y=b in this case are given by,

82w(y=b) T
m

W(y=b) - 0 ; - 33.
2

8y D
P

where Tm represents the mode m component of the edge moment [2].

the response in this case is obtained by solving the equation of

motion as given by equation (5), with p(x,y,z=0) replaced by the

scattered pressure component. In obtaining a solution to this

15



equation of motion, a first approximation is obtained by
neglecting the scattered pressure, in which case it becomes a
homogeneous equation of motion. The solution that satisfies the
boundary conditions is given by,

Wh(Y) = W(y) -
T
m sin(k2Y) sinh(klY)

sin(k2b) slnh(klb)

34.

To account for the presence of the scattered pressure

component, a corrective factor KII is introduced

Wl(Y) =

K IiTm sln(k2Y) slnh(klY)

sin(k2b) sinh(klb)

35.

Wl(Y ) represents the exact solution of the equation of motion

including the scattered pressure. The error introduced by the

approximation is again given by an equation of the form of

equation (16) where in this case as well We(Y ) must satisfy

equation (17). However, the boundary conditions that apply to

the term We(Y ) in this case are different from those given in

equation (18). The boundary conditions are modified to include

the influence of the edge moment.

We(Y=0 or b) - - Wl(Y=0 or b) - - KIIW (0 or b) - 0

OW_(y-O) aw21(y-O) aWh(Y=0)

.... KII - 0

ay 2 8y 2 ay2

8W 2 (y-b) 8W21(y-b) T Te m m

2 2
8y 8y D D

P P

(I - KII)

36.

The solution for We(Y ) is again derived in terms of the

Green function (similar equations as (19) and (20)). The

application of the boundary conditions into equation (19), and

setting We(Y ) = 0 for all values of y leads to an equation

involving Ps(Y),
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1

D
P

b

I ps(f)sin(k2f)d f - k2cos(k2b)(l - KII)Tm
o

-0

37.

Substituting for the integral in equation (37) by

equation(21), an expression for the correction coefficient KII is

obtained as follows,

KII. -

k2cos(k2b)

k2c°s(k2b) + _I Wh(_)l(_)S(/_)d_

2_2a a -_

38.

Having derived a solution for the response of the plate

subsystem subjected to an edge moment and including the influence

of the fluid loading on the plate, an input mobility function can

obtained for the edge of the plate. Defining an edge input

mobility as the rotational velocity response per unit applied

edge moment,

M 2
m

j_ 8W(y-b)

T 8y
m

J KII

2J pD
P

k2 k I

tan(k2b) tanh(klb)

39.

If the two plates of the L-shaped plate structure are identical

then,

M 2 - M 3 40.
m m

The subscript 3 represents the connected edge of the receiver

plate [2].

17



A transfer mobility function for the plate surface velocity
response per unit applied edge moment can also be defined from
the above analysis,

MI2
m

JKII

2_ pDp

sin(k2Y) sinh(klY)

sin(k2b) sinh(_ib)

41.

In this case as well the input mobility functions are only a

function of the mode number m. However, the transfer mobility is

a function of both the variable y and the mode number m, since it

represents a transfer to any point on the surface of the plate.

INPUT AND TRANSFER POWER EQUATIONS

Having derived the mobility functions, the derivation of the

power flow equations follows in the same way as was done for the

mechanical excitation [2]. There are however some differences.

One of the differences is that some of the mobility functions,

apart from the modal dependency, also include a dependency on

the spatial variable y. Since the excitation is a distributed

load the input power must be obtained both as an integral over

the spatial variable and as a summation over all the modes. The

modal summation is an alternative way of performing a spatial

integration when the response can be decomposed into a set of

modes.

For the transferred power, this is given by an integral along

the entire length of the junction or alternatively since this is

the direction for which a modal decomposition has been assumed,

as a summation over all the modes. Since the transferred power

is dependent on the edge moment which is controlled by the

incident acoustic excitation, to evaluate the edge moment and

hence the transferred power an integral still has to be performed

for the y direction, the direction perpendicular to the junction.

Power Input

The total input power is given by the product of the total

pressure acting on the source plate surface and the plate

velocity response integrated over the y direction and summed for

all modes m.

18
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b

IE IPinput - - Real 2Pi(y ) + Psi(Y ) + Ps2(Y ) Vl(Y) dy

4 m-i o

42.

where the two Ps terms represent the scattered pressure

components associated one with the response of the source plate

due to the incident sound wave and one due to the application of

the edge moment. V.I* is the surface velocity of the source plate
for mode m and is glven by,

vl(Y) = PoMI (Y) + TmMI2 (Y)
m m

43.

Eliminating Tm by solving for continuity of motion at the

junction edge,

Tm M3 - Tm M2 - -Tm M2 + Po M21
m m m m

Po M21
m

T -
m 44.

2 M2
m

substituting into equation (43),

VI(Y) = Po

M21
m

M I (Y) + MI2 (Y)

m 2M2 m
m

45.

Substituting into the power input expressions the values for

Vl(Y ) and for the scattered pressure components the following

result is obtained for the input power;

19



llmyM21bp m ]Pinput - _ Real 2 i(y) o + MI2 (y) dy

4 - 2M 2 m
m

i-- Real (_)

o 4_ 2

M21
m

Ml (_) + MI2 (_)
m m

2M2
m

46,

In the last integral of the above equation the variable y has

been changed to the variable _ which represents the fourier

transform variable with respect to y. Also, this last integral

represents the power flow out of the source plate, as radiated

acoustical power.

Power Transfer

The transferred power between the two plates is given by the

summation of all the mode contributions for the product between

the edge moment and the edge rotational velocity. This can also

be expressed in terms of the modal mobility functions derived

above,

OO

a _ P2oPtrans - -

4
m=l

M21
m

2M 2
m

47.

RESULTS

Results for the power input, power transfer and radiated

acoustical power are obtained using the above power flow

expressions. The characteristics of the plate structure

considered in the analysis are the same as those for previous

analysis in this series. These characteristics are shown in

figure (2.

2O

i
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Acoustic waves are considered incident on the source plate

such that both 8 and 4 are equal to 45 ° . The results for the

input and transferred power for this angle of incidence are shown

in figure (3). Figure (4) shows the acoustic power radiated by

the source plate obtained from the scattered pressure component.

As can be observed from this figure the contribution to the

scattered pressure from motion of the source plate due to the

presence of the edge moment is not significant.

To determine the influence of the fluid loading on the power

flow, the input and transferred power are computed when the the

fluid loading effects (both the scattered pressure and the

coefficients K) are neglected. Figures (5) and (6) show a

comparison between the two sets of results. As can be observed

from these figures the influence of the fluid loading is not very

significant, although some differences are observed mainly near

the resonant frequencies and in the troughs between the resonant

frequencies. The main influence of the fluid loading is to

increase the damping of the structure due to the acoustic

radiation.

Also considered are other angles of incidence. Figures (7),

(8) and (9) show the power input and power transfer for different

values of the incidence angles 8 and 4. The angles of incidence

considered have values of 8 and 4 given by 0°and 0 °, 15°and 30 ° ,

and 75°and 60 ° respectively for figures (7), (8) and (9). The

number of modes in figure (7) is reduced as compared to the other

results mainly because of the symmetry of the excitation. The

even modes are not excited with normal incidence. Apart from the

number of modes that are excited the general shape of the power

flow curves are also influenced by the angles of incidence.

CONCLUSION

The extension of the Power Flow Method to excitation

conditions other than mechanical excitation has been demonstrated

in this report. The excitation considered here is an incident

acoustic wave. In this case of acoustic excitation, the response

of the structure influences the incident acoustic field and the

problem of the structure response becomes a fluid-structure

interaction problem.

Since most of the work found in the literature on fluid-

structure interaction deals with simply supported plate

structures, because of the requirement of an apriori knowledge of

the vibration mode shape, which is not valid in the case of

connected plate structures, an approximate solution based on the

work by Leppington [8] has been used here. Although fluid

loading is considered, it is found that light fluid loading does

not significantly modify the mode shape of the vibrating plate

structure but that the scattered pressure can be significant.
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If the results obtained here for the power input and
transferred for the L-shaped plate acoustic excitation are
compared to results for mechanical excitation [6], the following
observation can be made. With uniformly distributed mechanical
excitation, the power flow is similar to that for excitation from

normal incidence acoustic waves. For oblique incidence waves
additional modes of vibration are excited same as in the case of

point excitation. Compared with the power flow results for point

excitation, the power flow is higher in the case of the

mechanical excitation. For these comparisons the total load on

the source plate is kept constant.

As a final conclusion, an important result of this report is

that the effects of fluid loading on a connected plate structure

can be integrated into the general Power Flow Method. This

enhances the usefulness of power flow methods in determining the

response of plate-like structural components and their

interaction with the surrounding medium.
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Appcndiz A

RELATIONSHIP BETWEEN SCATTERED PRESSURE

AND NORMAL SURFACE VELOCITY

In deriving the relationship between pressure and normal

surface velocity the following conditions are assumed (a)

the plate normal displacement has a time dependency of the form

W(x,y,t) = W(x,y)exp(j_t) (A.I)

(b) the plate is finite and lies in the plane (x,y,0) with

the fluid occupying the half-space z a 0; (c) the

propagation of a plane acoustic wave in three dimensional

space is given by:

p(x,y,z,t) = pexp(-JkxX -jkyy -jkzz)exp(j_t ) (A.2)

The Fourier transform of W(y) is defined by:

W(_) = fW(y) exp(jBy)dy (A.3)

and the inverse transform by:

÷W

1 [W(B) exp (-jBy) dBW (y) = (A.4)



From the momentum equation in the z direction:

aV
a-E + Po - 0 (A 5)az at

where p is the acoustic pressure, P0 the fluid mean density

and V the particle velocity in the z direction. From

equation (A.5)

-jkzps(x,y,z)exp(j_t ) = -j_P0V(x,y,z)exp(j_t) (A.6)

where Ps is the scattered pressure.

At the interface between the plate and the acoustic

medium (z = 0), the surface normal velocity is equal to the

acoustic particle velocity. Therefore at this interface

_P0 v(x,y)
Ps (x,y) =

Z

where k must satisfy the condition:
%

(A.7)

k2 + k 2 + kz2= (_)2 = k 2
x y

(A.8)

where k is the acoustic wavenumber, _ the pulsation

frequency and c the acoustic wave speed.

Let u and B be the plate wavenumbers in the X and Y

directions respectively. Since the acoustic wave is

generated by the plate motion, the X and Y variations of

the acoustic field must follow those of the plate and

J



therefore:

x
and k _ B (A.9)

Y

That is k 2 = k 2 _ 2 _ B2 = k 2_ k 2 (A.10)
z p

where k is the plate bending wavenumber
P

Spatial Fourier transforming equation (A.7)

Y directions

p, (,_,B) = -_ v(_,_).

in the X and

(A. ii)

For a finite rectangular plate, simply supported at

x = 0 and x = a, the response of the plate can be described

by:

V(x,y) = _ V(y)sin(E_) (A. 12)
p=1

Fourier transforming the expression for V(x,y)

V(a,_) = Z V(_)(aP_) (-l)Pexp(+_ °_a) - 1

p:, c_2 _ (aP--_)2
(A.13)

For p,(x,y), this is first written in the form

cO

p,(x,y) = _ p,(y) sin(_)
m=1

(A.14)



2 I .mEx,
where P,(y) = _ j p,(x,y)sin(--_--;dx

0

7

and then Fourier transforming in the Y direction

p, (B) = _ p, (x

0

•mEx,
,8) sin _--_--)dx (A. 15)

For the X direction, also taking a Fourier Transform

P,(_) ili2 1
=_

0
mEx.P (u, B) exp (-jux) da sin (-_--) dx

(A. 16)

+00

iI=E--a P, (u,B) (mE) (-l)mexp(-jua) - 1
a 2 .mE. 2

d_

(A. 17)

Combining equations (A. II), (A.13) and (A.17) yields:

(.8) - °_Po mE _= I
Ea (a--) (a)P-q V(8)P,

[p=*

÷00

I (-1)nI exp(_(xal - I (-1)Pexp(-j(xa) - I i d(x 1

2 (mE. 2 2 (ap__) 2-=, o_ - _'--J a - k z

(A.18)

P

t



The terms of th_ summation for which p _ m represent

intramodal coupling which has been shown to be negligible

for light fluid loading provided the modal density of the

structure is low.

Therefore equation (A.18) can be simplified to

_Po m_ 2I
p, (_) = _-_--(_-) (B)V(_) (A.19)

where

÷CO

[ [ 1 - (-l)mcos_a _ 1
I(_) z 2 du

J
2 m_ 2 2. -c_) 3 kz

(A.20)

From (A.20) equation ( 21) can be derived since the

definition of the inverse Fourier transform is:

+W

IfPs(_) - 2_ p,(B)exp(-j_)d_

and substituting for p (B)
I

b

P,(_)sin(k2_)d_ =

0

(A.21)

b

iO0o21 ]2_ _a (a--) I(B)V(B) sin(k2_)exp(-j_)d _ dB

--w 0

(A.22)



95

or, since V(B) = jeW(B), where W is the displacement

b

if5- P,
P 0

sin (k2_) d_ =

÷W
2

2_2a (_)2(_)II(B)W(B)S(B)d B
P

--00

(A.23)

where

b

S(8) = Isin(k2_)exp(-jB_)d _

0 "-

I{82 - k 2
2

k 2 + exp(-jBb)[j_sin(k2b ) + k2cos(k2b)]

(A.24)

It should be noted that S(B) is not the Fourier

transform of sin(k2_ ). From this expression the scattered

pressure component can be evaluated.

,r,
i

|
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Figure 1. Incident acoustic pressure at oblique angle _ and e.
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Figure 2. Plate structure showTng plate characterTstics.
and coordinate directions.



.]

.ill

.im!.MI

1 .£-5

I !. E-g

! .£-?

!. £-is,

1 oRIG,._:_AL PAGE IS
Of. pOOR QUALITYI

Irpequenoy HI

PtllUrW |. Powlr input Md trlefer per untt toouetla preeeure with the
tnqluenoe of fluid losding for angle of Ineidklnee _ lind • equlll 4_' llnd
45"reepeotlvely. s Power Inputl N-I pourer trtneqer.

.!

i

.8!

1.£-5.

]. £-6,

! .[-7,

!. £-0.

1 .£-0.

Ptiure 4. Radllted sooutloal pouer per unit saeuetle preeeure by the
eouPee p|ite. I Tote| redltted potmrl --I oontrtbutton to
eedltted pouer qron edge moment.

j_



.1

.01

I .£-6

I .E-?

/ \

1 .E-8 e l v ;

g 2H 4gg 6gO 080 1800

Irrequenoy Ha¢

Figure 5. Pover Input per unit ioouetfo preleure with Ind v(thout tho
Influenoe of #lutd loading. I Htth Fluid lotdfn E effeotel m-!
without fluid 1otdtng offooto.

.B!

.HI

.ml

1 1 .£-5

!, E-6

! .£-;'

! .£-e

!. E-9

/

Frequenoy I_

_gge

Figure 8. lover trunofer per unit toouotto preooure with end without

the tnfluenoe of fluid To,din|. 8 Nfth Fluid lo,dlngl --s without
fluid lo,d_ng.

j J



.1

.81

o8gl

.8881

1. E-5.

I .E-iS

1 .E-P

l • C-O

/J
// \ I
i 'lJ

1 .('-9
e e ! e

8 208 4m9 680 BEg 1098

Frequenoy H'Z

Figure 7. Polmr fnput end tree#or per unit Ioouetlo preeoure with the
tn, luenoe o# #lu_d loading #or _ngle o# lnoldenoe _ und • equtl B'snd

8"reepeotlvely. t Purer lnputl -_l purer trine#or.

.1

.BI

.MI

.8801

1 .E-5

I 1. [-6

| .£-7

! .£-g

/
\j Ij,J 'J,,

1 .r-9 . -- ; 1"
8 288 4N 688 ilk

Feequunoy 14z

!m

Figure 8. Pomp Input end true#or per unit uoouotlo preeoure with the
In#luenoe o# #lutd loedtng #or angle o# fnoidanoo _ mnd • equul l_tnd
3B_roupootively. 8 Po_or tnp.Jtl --8 poumr trmne#oP.



*F
"l

.I-:

.BI -

I .MI

.SM!

I .E-5

! .C'-8

I.E-? o

I. £-.8,

7

I.£-0
w • w ;

• 2N 411 8110 ON

_P|qUI_oyHz

1000

Ftguro 9. Pomr tnput _d tram#or per unit moouetto prooouro with the
In#luenoe o# #luld lording #or Ingle o# tnoldlenoe _ _nd 0 equsl ?_nd
68°reepeo_tvoly, a PoweP fnputl _i poueP tPmno#ero


